Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1214920160220010008
Soonchunhyang Medical Science
2016 Volume.22 No. 1 p.8 ~ p.15
A Study of the Association between Enabled Homolog Gene Polymorphisms and Kawasaki Disease in Korean Children
Yoo Kyung-Hee

Abstract
Objective: The etiology of the Kawasaki disease (KD) remains unknown despite of extensive studies but infection, immunity, and genetics were suggested as causes. There have been attempted to link susceptibility to KD to allelic variations to search related gene. The enabled homolog (Enah) gene on the human chromosome 1q42.12 encodes enabled/vasodilator-stimulated phosphoprotein (Ena/VASP). Ena/VASP is a regulator of actin cytoskeleton, exists in cytoplasm, and maintains homeostasis such as immune response, blood vessel preservation, and hemostasis. The aim of this study was to investigate polymorphisms of the Enah gene as a risk factor for KD and coronary artery lesions (CALs) as a complication.

Methods: In the Enah gene region, 15 single nucleotide polymorphisms (SNPs) were selected using human SNP websites (http://www.hapmap.org/, genome build). Three hundred and six healthy controls and 106 KD subjects were recruited. SNP genotyping was performed using the Golden Gate assay on an Illumina BeadStation 500 GX (Illumina Inc., San Diego, CA, USA). Frequencies of allele were obtained and the genetic association between of the Enah gene polymorphisms and susceptibility to KD and CALs was analyzed by SNPstats, Haploview software ver. 4.1 (Broad Institute, Cambridge, MA, USA). Multiple logistic regression analysis with adjustment for gender was performed.

Results: One SNP (rs1891000) among total fifteen SNPs was associated with KD. Moreover, we found a significant association between rs487591, rs576861, rs7555139, rs10799319, and the development of CALs in KD patients.

Conclusion: These results suggest that the polymorphism of Enah gene may be associated with the occurrence of KD and development of CALs as a complication.
KEYWORD
Mucocutaneous lymph node syndrome, Coronary artery, Enah protein, Single nucleotide polymorphism
FullTexts / Linksout information
 
Listed journal information
KoreaMed